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A conducting liquid with a free surface is subjected to a vertical magnetic force 
due to imposed, horizontal, magnetic and current fields in the liquid. Because 
the current field is modified differently by differently oriented surface waves, 
the propagation of gravity waves becomes strongly anisotropic. The cases of 
shallow and deep fluid are explored. The group velocity shows features that are 
reminiscent of magnetoacoustic waves. The need for stability of the surface 
sets limits on the magnetic force which may be imposed. The feasibility of experi- 
ments is discussed and the effect of ohmic damping and surface tension is found 
to be relatively unimportant under suitably chosen conditions. 

1. Introduction 
Addition of electrical conductivity and magnetic fields to a classical problem 

in fluid dynamics sometimes, though not always, produces interesting and un- 
expected effects. A case in point is provided by the gravity waves discussed in 
this paper. The waves are propagating on the free surface of a conducting liquid 
in the presence of a vertical body force due partly to gravity and partly to im- 
posed, horizontal, magnetic and current fields in the fluid. The resulting mag- 
netic force may augment or oppose gravity. The interest of the problem arises 
from the extreme anisotropy of the propagation of waves when the magnekic 
j x B force is strong enough. As well as being sometimes dispersive, in the normal 
manner, the waves travel at  different phase velocities in different directions, 
and so the group velocity is also strongly anisotropic. The behaviour is somewhat 
reminiscent of that predicted theoretically for acoustic waves in perfectly con- 
ducting gases in magnetic fields. However, these surface waves should be easily 
demonstrable in the laboratory. The paper discusses conditions for possible ex- 
periments in which the theoretical approximations would be reasonably valid. 

The basic reason for the anisotropic propagation is that the waves tilt the cur- 
rent and hence the magnetic force to a variable extent that depends on the direc- 
tion of propagation. If one thinks of the mechanics of ordinary gravity waves 
as being essentially the acceleration tangentially of the liquid on the flanks of 
waves by the tangential component of gravity (the pressure gradient along the 
surface being zero in the absence of surface tension), then it is clear that a mag- 
netic force that stays vertical as the wave passes will act to help or hinder gravity, 
and thus alter the wave speed, whereas a magnetic force that stays normal to 
the surface will have no effect. Now the imposed current component parallel 
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to the wave crests (if these are straight) stays straight and horizontal and so its 
associated j x B force stays vertical, if we assume the horizontal magnetic field B 
is unperturbed by the motion. On the other hand, the current component parallel 
to the wave normal has to follow the surface, and its associated j x B force 
stays normal to the surface and has no effect on the waves. The implication is 
that only the component of imposed current parallel to the wave crests and the 
associated perpendicular component of magnetic field affect the propagation. 
Note that the total imposed field and current need not be perpendicular and 
may even be parallel, whereupon j x B vanishes in the quiescent state. These 
qualitative conclusions are confirmed by the analysis which follows. 

At first sight one might guess that the magnetic force affected the waves princi- 
pally via the current component parallel to the wave normal, which would be 
intensified under the troughs and weakened under the crests, but this is an 
entirely misleading approach, because the pressure easily balances the resulting 
j x B forces in this case. 

The case with the imposed j and B fields parallel has been briefly discussed 
by Murty (1961) in his paper on the stability of the free surface or surfaces of a 
layer of fluid bearing a uniform imposed current. Most of that paper is devoted 
to discussing the case where the magnetic field is solely due to the imposed current. 
Northrup (1907) performed experiments in NaK related to this case and appears 
to have been the first to exploit a covering of a lighter, non-conducting liquid 
(kerosine) to make it easier for magnetic forces to compete with gravity. 

In  the present work, however, we take the case where the field due to the 
imposed current is negligible. 

No mention has yet been made of wave damping by ohmic dissipation, which 
has been discussed previously by Fraenkel(l960) for the case where no current 
was imposed and the magnetic field was vertical. It will be assumed herein that 
perturbation of the imposed current by the induced e.m.fs is negligible and this 
eliminates the ohmic damping. The current is perturbed purely geometrically 
by the wavy surface. We also neglect all perturbation of the imposed magnetic 
field. We are thus concerned with a very degenerate, albeit physically realistic, 
variety of magnetohydrodynamics. Section 5 gives a discussion of feasible 
physical magnitudes, and the effect of ohmic damping is considered further in 
the appendix. 

One constraint on the severity of the anisotropic effect is that the liquid must 
be in stable equilbrium in the absence of waves. The paper therefore includes the 
necessary discussion of this instability and the resulting limits on imposed current 
and field. Baker (1965) has reported experiments on the instability of the surface 
in the case where the imposed field and current are mutually perpendicular. 

2. Linearized theory (plane waves) 
We shall consider small amplitude waves for which the equations are lineariz- 

able in the perturbations. The undisturbed state consists of uniform liquid at  
rest under the horizontal magnetic and current fields. Any distribution of waves 
can be Fourier analyzed into superposable plane waves. The analysis may thus 
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deal initially with plane, harmonic waves of horizontal wave-numbers k and 
frequency w.  

Denote vertical distance from the equilibrium surface level by z, and horizontal 
distance parallel and perpendicular to the wave normal by TZ and s respectively 
(see figure 1). Let n, s, z be right-handed co-ordinates. The problem is now two- 
dimensional, with no variation in the s direction. 

I Magnetic 

FIGURE 1 

In  the undisturbed state, we impose a uniform, horizontal magnetic field B 
with components B, and B,, and a uniform, horizontal current of density J, 
with components J, and J,. In  the absence of significant magnetic field pertur- 
bations, curl E = 0 (E being electric field) and so E, is independent of n and z .  
If only d.c. voltages are applied to the fluid to drive the imposed current, E, 
must be independent of time t also. Neglect of v x B terms in Ohm’s law (an 
approximation which is defended later) implies that the current density in the 
s direction stays constant at the value 4. 

Taking div j = 0 and assuming B stays uniform, we have 

curl j x B = (B.grad)j, (1) 

(2) 

which has no s component. The linearized equation of fluid motion is 

p &/at + gradp = j x B -pgi (i a vertical unit vector) 

if viscosity is neglected. Thus pawlat = curl j x B, if w = curlv, the vorticity, 
and in particular aw,/at = 0. Since all perturbation quantities, including vorticity, 
are harmonic functions of time, w, must vanish, and we can take the flow in the 
2, n plane as being irrotational, with two-dimensional velocity potential 
$(z, n, t). Incompressibility then implies 

VZ$ = 0, (3) 

the Laplacian being two-dimensional. 
23-2 
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The current flow j‘ in the z, n plane is perturbed by the waviness of the surface, 
in general. The vertical perturbation current component j ;  produces an oscillat- 
ing magnetic force j: B, which produces motions in the s direction, but these have 
little importance in the present approximation. It is unnecessary to calculate 
the current distribution. 

In  equation (2), j x B can be expressed as -J,B,i plus j‘ x B, (both of which 
lie in the x ,  n plane) plus the s component. Note that at the liquid surface, j’ 
must be parallel to the surface and hence j’ x B, is normal to it. Equation (2) 
can be partially rewritten 

grad{paq5/at+p+(pg+J,Bn)z} = j ’ x  B,, 

where grad is two-dimensional. Integrating along the ‘surface, zo = e ei(wt-kn), 
say, we deduce that 

p aq5/at + p  + (pg + Q,) zo = P(t) there. (4) 

I f  the ambient pressure above the liquid is taken as zero, and surface tension 
is a, then in the liquid at  the surface, p = - a a2zo/an2 = k2as ei(ot-kn), if we assume 
that az,/an is small, i.e. e is small in comparison with the wavelength. We apply 
the boundary conditions at z = 0 in the usual manner. Since q5 is also periodic in 
n, evidently P(t) = 0 in (4), which becomes 

p @/at + ( k2a + pg + J,B,) 8 eqwt-kn) = 0 at z = 0. (5) 

The other surface boundary condition is that 

v, = a$/& = Dz,/Dt = az,/at (6) 
to the first order, at z = 0. 

at x = - h. To satisfy this condition, (6) and (3), q5 must be of the form 
If the fluid is of finite uniform depth h, there is the further condition a$/& = 0 

q5 = (iwe/k) ei(wt-kn){sinh kz + coth kh cosh kx}. 

This also satisfies ( 5 )  if 

pw2 = ktanh kh(k2a+pg+J,Bn), ( 7 )  

the dispersion relation. This is consistent with Murty’s (1961) earlier dispersion 
relation in the case which is common to the present work, namely: p = 0, one 
free surface and negligible magnetic field due to the imposed current. It should 
be noted that magnetohydrodynamic effects only enter our problem via the 
boundary condition on pressure. 

The anisotropy resides in the term J,B, in (7). As remarked earlier, only J ,  
and B, affect the waves. If the angle between J and B is p, and the wave normal 
and wave-number vector k are both inclined at  B to B and the x axis, as in figure 2, 
then J,B, = JBcosesin(P-0), 

the 0 dependent term in (7). The waves are also dispersive with respect to fre- 
quency unless the phase velocity c = w/k is independent of w or k. This only 
occurs when surface tension is negligible and the liquid is shallow compared with 
the wavelength, with kh < 1 and tanh kh .i; kh. 
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Before we study the significance of (7), it is necessary to formulate the limits on 
the anisotropic J ,  B, term that arise from the need for the undisturbed state to 
be stable. In  the common case p = 0, our results agree with Murty's stability 
condition, with self-field neglected. 

Figure 2. 

3. Stability considerations 

\ 
Top view of liquid surface. 

The preceding analysis can be utilized for a study of stability, subject to the 
same approximations. Instability corresponds to  the case where (7)  permits iw 
to have a real positive part for at least one real value of k and 8. Since then 02 
is real, iw would have to be wholly real, i.e. w2 negative, with k2a +pg + J ,  B, < 0, 
for some value of 8. Thus stability requires k2a +pg + J ,  B, > 0 for all k and 8, or 

pg +J,  B, > 0, for all 8, (8) 

to achieve stability of even long waves (of small Ic) which surface tension cannot 
stabilize. 

From this point onwards, we shall assume that k2a < pg, so that surface ten- 
sion may be neglected, to bring out more clearly the magnetic effects. The dis- 
persion relation is then 

pw2 = k tanh Ich(pg + J B  COB 0 sin (p- e)}. (9) 

(10) 

Then d j w ;  = 1+ycosesin(p-0), (11) 

Let w,, be the frequency of waves of the same wave-number in the absence of 
magnetic effects, where 

w i  = gk tanh kh. 
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if y = JB/pg; an essentially positive ratio. Stability requires that the right- 
hand side of (11) be positive for all values of 8, i.e. that y < 2/ ( l  -sinP). J x B 
helps gravity if 0 < /3 < rr and opposes it if rr < p < 2rr, if we let /3 range from 
0 to 271. Equation (1 1) is usefully rewritten 

(12) wz/wi = (1 + Qy sin/3) (1 + 6 cos 2$), 

'.O t 

0.5 1.0 1.5 ' 0.5 I .o 1.5 2.0 

0.5 1.5 " T 

FIGURE 3. Polar plots of phase velocity (a) and (b)  and group velocity ( c )  and (d) for 
shallow liquid (a )  and (c) and deep liquid ( b )  and (d).  

where 6 = Qy/( 1 + gy sinp) and $ = 6'- +/3 + in. The point of these substitutions 
is that we have reduced the purely 8 or $ dependent factor to a form that depends 
on only one parameter 6 for various values of y and p. Stability now requires that 

When p = Qrr, and J x B helps gravity, there is seen to be no limit on the mag- 
nitude of J B ,  but in all other cases J B  is restricted, even when J x B is zero. 
The stability limit is a stronger constraint than the requirement that gravity 
can overcome J x B, so that t'he fluid is not lifted bodily when sin ,B is negative. 
This more primitive requirement is merely 1 +ysinp > 0 or y < I/( -sinP), 
i.e. weaker than the stability condition. The two conditions only coincide for 
p = #m, with J and B perpendicular and J B  limited to pg. In Murty's case with 
J and B parallel or anti-parallel, and no magnetic force in the undisturbed state, 
the limit on J B  is Zpg, whether /3 is 0 or rr. 

l > 6 > 0 .  (13) 
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4. Phase velocity (surface tension neglected) 
The phase velocity c or w/k in the direction 0 in general depends on w or k 

as well as 0 (or $). The exception is the case of shallow fluid, with kh < 1 and 
oo = k2gh, so that 

c2= gh(l+~ysin/3)(1+6cos2$), (14) 
irrespective of w or k. 

as a function of $. For deep fluid, with kh B 1, w i  + gk and 
For other cases, it  is most fruitful to think of w as fixed and then consider c 

c = (g /w)  (1 + &sinp) (1 + Gcos 2$). 

Figure 3 shows one quadrant of the phase velocity plotted as a radius vector 
as a function of its inclination @ to the direction of maximum phase velocity, 
namely, 0 = in-- @(mod@, which is related quite subtly to the directions of J 
and B, as figure 2 shows. For the most ‘natural’ cases, with /3 = in- or @, 8 = 0 
or +n(modn) respectively. The scales in figure 3 are such that phase velocity is 
given as a multiple of {gh( 1 + &y sinP)}i in figure 3 (a) (shallow liquid) and of 
(g/o) (1 + $7 sinP) in figure 3 (b )  (deep liquid). The curves are plotted for values of 
6 equal to 0, 9, $ and 1 (the stability limit, a t  which cmin becomes zero). It is worth 
noting that for 6 = 1, in the case of shallow fluid, the c plot in each quadrant is 
a semicircle, exactly as for Alfvh waves. The complete c plot in each case can 
of course be found by reflexion of figure 3 in its axes. 

5. The validity of the approximations and the experimental prospects 
Linearization involved the neglect of the quadratic (v.  grad)v term in com- 

parison with the av/at and other terms. As with ordinary waves, this is valid 
provided ks < 1, i.e. amplitude < wavelength, and s < h, i.e. amplitude < depth. 

We have also assumed the magnetic field uniform, unperturbed by both the 
imposed current and the induced currents due to v x B. A reasonable assumption 
is that the liquid occupies a trough of length and breadth 1 to  depth h, the imposed 
current J being supplied between a pair of highly conducting opposing faces. 
The other faces of the trough are non-conducting. Probably h would be less 
than I ,  and much smaller than 1 if shallow fluid waves were under investigation. 
It would be reasonable to return the total current JZh via a flat conductor 
immediately below the trough to minimize stray field due to J .  Ignoring edge 
effects, the field due to J in the fluid would then be horizontal and perpendicular 
to J ,  rising from zero at  the surface to a value pJh  at the bottom. The irrotation- 
ality of the motion in the z, n planes is destroyed by the presence of such a non- 
uniform field. In  a finite experiment, moreover, edge effects would probably 
occur and so the perturbation field of order pJh due to J should be kept small, 
i.e. pJh < B.  

In  discussing the further approximations, we take first the case of deep liquid, 
pausing finally to note the differences that occur with shallow liquid, 

Deep liquid (kh 9 1 ) .  Consider the effects of the e.m.f. v x B, which has been 
neglected in the analysis. Associated with it will be an induced current contri- 
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bution which perturbs the magnetic field, with consequent non-zero curl E. 
The induced current also produces a magnetic damping force. Only the rotational 
part of v x B can drive currents in the fluid, namely that part due to B,. So 
the induced currents will be of order uv, B, in the s direction and uvs B, in the z, n 
planes; while v, and vs are both of order we. (v, is of order ksJBlpw,  which is of 
order W E ,  if we take J B  of order pg,  for interesting effects, and u2 of order kg.) The 
currents of order awe€? cause perturbation fields of order puweBlk (since l lk  
is the relevant length scale) which are negligible if puwslk  < 1.  This is also the 
condition for neglecting the modification of the induced currents due to the fact 
that curl E + 0. Forces associated with the induced currents could affect the 
dynamics by disrupting the two-dimensional potential flow or the boundary 
condition. In  both cases it is only s-wise current and the associated magnetic 
field in z, n planes that matter. For small effects on the boundary conditions we 
need uweB < J ,  and for small effects on the bulk flow we need the induced j x B 
forces, of order uweB2, to be small compared with pav la t ,  of order pew2, i.e. 
aB2 < pw.  This includes and surpasses the previous condition since ke < 1,  
w 2  z kg and J B  z pg.  

Another effect is that the wavy surface involves current perturbations in z, n 
planes, and hence B, perturbations that produce a non-zero curl E in the s 
direction and further modify the current in z, n planes. The currents due to wavi- 
ness are of order keJ,  causing magnetic perturbations of order peJ, whose chang- 
ing causes electric fields of order opeJlk and currents of order w p x J l k .  These 
are negligible in comparison with keJif wpcrIk2 < 1. The condition may be 
interpreted as requiring skin depth 9 wavelength. 

Viscosity is negligible ifpvV2v, of order pvk2v, is much smaller than pavlat, 
of order pwv, i.e. if vk2 < o, v being kinematic viscosity. The last two conditions 
are compatible since, for real liquids, pcrv < < 1. If we also wish to retain the 
simplification that surface tension is negligible, we require k2a < pg, assuming 
J ,  B, + pg is of order pg. 

Shallow liquid (kh  < 1). In  this case there are differences because u2 is of order 
k2gh, and the effects of induced currents are weaker because of the shallowness. 
The perturbation fields due to the induced currents in the s direction are of 
order pcaweBh and we now require puwEh < 1. We retain the condition nweB < J 
now. The condition for small disruption of the potential flow by induced j x B 
forces is now weaker than uB2 < pw,  because the forces, vertical and of order 
uoeB2, must not be compared merely with pav,/at, since this is negligible in 
shallow liquid. The curl of the force, of order kuweB2, produces vorticity of order 
kueB2/p, consisting chiefly of av,/az, so that the v, perturbations are of order 
kueB2hlp. These are small compared with v, in the irrotational solution (of order 
welkh) if uB2k2h2/pw < 1. This condition for the neglect of damping is confirmed 
more rigorously in the appendix. 

The condition for neglecting currents induced by curl E from the changing 
magnetic field associated with waviness of the current pattern now becomes 
wpuhlk < 1 because of the restricted depth. 
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Possible experimental conditions 

That the theoretical approximations we made are reasonable can be seen by 
considering some typical, feasible experimental conditions. The most convenient 
fluid is mercury; selecting a better conductor like sodium would be ill-advised 
because the damping would be higher. With mercury, approximate values are : 

r~ = lo6 per Slm, 

Y = lo-' m2/s, 

p = 1.4 x 106kg/m3, 

a = 0.5 N/m. 

Also p = 1.2 x Wb/A-m, g = 10 m/s2. 

Let B = 0.2 Wb/m2 and J = 5 x lo5 A/m2, both feasible practically, although a 
large low-voltage current source would be needed. Then y = JB/pg = 0.7, 
so that interesting effects should occur. B must not be too big to keep the damp- 
ing low. One limit on J is ohmic heating of the mercury. If  we ignore heat losses, 
its temperature would rise at a rate of 0.12 "C per second with the above value 
of J .  This would be acceptable if runs were not protracted. However, the values 
of J which Murty (1961) suggests for experiments with self-field only are up to 
lo7 A/m2, which would imply unacceptably high rates of heating. 

Deep liquid. Consider first an experiment in 'deep' liquid, of depth 0.05 m. 
For present purposes take kg = u2, and consider waves excited at  a frequency 
w = 30 s-1. Then k = 90 m-l. The crucial ratios, which should be reasonably 
small for our approximations to be valid, are then as follows: 

deep fluid approximation: l l kh  = 0-22; 

(for this value tanh kh is within 0.02 yo of unity); 

small effect of J on B: pJh/B = 0.015; 

small damping by inducedj: 

negligible surface tension: 

rB2/pu = 0.09; 

ctk2/pg = 0.03; 

small curl E: upc/k2 = 0.004; 

negligible viscosity: vk2/w = 3 x 

It is the first four ratios in the above list which really constrain the choice of 
conditions. 

In  addition there are constraints on the amplitude E :  

linearization condition : 

small effect of motion on B:  

6 < 1/k = 0.011 m; 

E -g k/prTw = 2.5 m. 

The first condition dominates, but could easily be met. 
Shallow liquid. Somewhat different and less stringent conditions must be met 

for an experiment in shallow mercury. Now we select h = 0-005 m and k = 40 m-1. 
If we take w2 = k2gh, for present purposes, then w = 9 s-l. The crucial ratios, 
which should be reasonably small for our approximations to be valid, are then 
as follows: 
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shallow fluid approximation : kh = 0.2 

(for this value, tanh kh = kh to within 1.3 yo); 
small effect of J on B:  
small damping by induced j: 
negligible surface tension: 
small curl E: 

pJh/B = 0.015; 

aB2k2h2/pw = 0.013; 

ak'fpg = 0.0057; 

w p h l k  = 0.0013; 

negligible viscosity: vk2/w = 2 x 10-5. 

In addition there are constraints on the amplitude E :  

linearization condition: E < h = 0.005 m; 

small effect of motion on B :  B < lfpuwh = 200 m; 

small effect on dynamic boundary condition E < J/uwB = 0.25 m. 

The first condition dominates, but could easily be met. 

electrolytes, and the damping of the waves would then be extremely low. 
With stronger fields it would also be quite feasible to run experiments with 

Choice of /? 
The parameter 6 should be made as large as possible within the stability limit for 
most interesting effects. The question then arises as to what value of /? is most 
advantageous inborder to avoid excessive values of JB. It emerges that the most 
economical values of J B  and y are achieved by taking /? = &r. Then y = 1 makes 
6 = 1. Thus the most obvious configuration, that with J and B perpendicular, 
is also the best. The direction of maximum phase velocity is then 6' = f +7r, 
i.e. in the k J direction. 

6. General propagation and group velocity 
The anisotropy of the phase velocity displayed in figure 3 implies that energy 

will propagate with an anisotropic group velocity, which is not in general parallel 
to the phase velocity. The dispersion relation w = f (k ,  @) can be replaced by 
w = F(k,,  k,) where k, = k cos $ and k,  = k sin $, k,  and k2 being the components 
of the wave-number vector. Then the components of the group velocity C are 
C, = aw/ak,, C, = aw/ak2 (Whitham 1961). 

Xhallow liquid. Here we have 
w2 = k2gh( 1 + Qy sin/?) ( 1  + Gcos 2$) 

w2 = gh( 1 + Qy sin/?) {( 1 + 6)  k2, + (1 -a)@}. or 

It follows that 
( 1  - 6) sin $ Cl - ( 1  + 6) cos $ and (72 - 

(gh( 1 + 4y sin p))* ( 1  + Scos 2$)9 {gh( 1 + &y sin/?)}& - (1 + 6 cos 2$)4 ' 
These results are presented as a polar plot in figure 3 (c ) .  The scale is such that C 
is expressed as a multiple of {gh( 1 + i y  sin/?)}&. Note that $ is the inclination of 
the related wave-number vector, not of C itself. The curves in figure 3(c) are, 
somewhat surprisingly, ellipses, because 

Cl/( 1 + 6) + Ci/(l- 6) = gh(l+ &ysin/?). 
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When S = 1 (the stability limit), Cl = 4 {2gh( 1 + $7 sin/3))* and C, = 0, and the 
locus degenerates to two points on the $ = 0 axis. There is then unidirectional 
propagation as in Alfv6n waves, but at an angle (an - $/3) to the magnetic field. 

w2 = gk( 1 + 4-y sinp) (1 + S cos 2$), 

Deep liquid. In this case 

or 
It follows that 

w2 = g( 1 + sin p) (( 1 + 6)  k2, + (1 - 8) k$)/(k2, + hi)&. 

and 

= 4( 1 + 2s - s cos 2$) COS $, d l  

g(1 +$ysinB) 

These results are presented as a polar plot in figure 3 (d). The scale is such that C 
is expressed as a multiple of (g /w)  (1 ++ysinp). The character of the locus 
changes markedly when S exceeds the value Q. Then Cl and C, experience a 
simultaneous extremum as $ varies and cusps result. There is some resemblance 
to the behaviour of slow magneto-acoustic waves, but there are no cusps on the + = 0 axis at non-zero C as in the magneto-acoustic case. 

Figures 3 (c)  and ( d )  only present one quadrant of the plot, which may be com- 
pleted by reflexion in the axes. 

The results are novel enough to suggest that experiments in both deep and 
shallow liquid would be rewarding, despite the obvious experimental difficulties, 
and the invalidity of our approximations under some circumstances. Investiga- 
tions could include plane waves, standing wave modes, resonance, and waves 
excited at  a point harmonically or by an impulse. The shallow liquid case is 
simpler in that group and phase velocities are independent of frequency, where- 
as the case of deeper liquid provides a good manifestation of the class of linear 
waves which are dispersive with respect both to frequency and orientation. 

The work was performed while the author held a visiting post at  California 
Institute of Technology, Pasadena, California. The research was supported by 
the Office of Naval Research of the U.S. Navy. 

Appendix. The importance of the v x B e.m.f. and damping 
In  the main paper the effect of v x B on the current flow was ignored. To 

exhibit its degree of importance, we now investigate its effect in the simple 
particular case where J and B are perpendicular and one of them is parallel to 
the (straight) wave crests. 

If B is parallel to the wave crests, curl v x B = 0,  if we assume B uniform and 
unperturbed, and v x B cannot drive currents and is balanced by an electric 
field. In  this configuration there is no damping of waves by the magnetic force. 

We therefore turn to the case where J is parallel to the wave crests (the s 
direction) and B lies in the n direction. If we do not neglect v x B, the current 
density j, is not uniform and equal to 4, as was assumed in $2. Equation (1) 
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then indicates that the s component of curl j x B is B(ajs/an) which equals 
uB2av,/an when we keep the v x B term in Ohm's Law, 

j/u = E + v x  B, 
E, being uniform. Since the flow in z,n planes is evidently no longer irrotational, 
we make use of the two-dimensional stream function @ instead of q5. Then the 
inviscid, linearized vorticity equation 

p aop t  = curl j x B 

since v, = a$/az, vz = -a$/an. The boundary condition at the surface is that 
p = const., if we neglect surface tension, or ap/an+ (aplaz) (az,/an) = 0. But, 
from ( Z ) ,  8pla.z = - (pg+JB), to the first order, and 

apjan = -pav,/at = -paZ@/az at. 

Thus pa3$/at2az = (pg + JB) a2@/an2 at  the surface, (A2) 

has the s component pV2a$/at = - uB2a2$/an2, (A11 

since v, = -a@/an = az,/at, to the first order. A solution of the form 
$ = eiwt+mn(C cosh kz + D sinh kz) satisfies (A 1) if piw(m2 + k2) = - uB2m2, or 

k z f im(1- iih), (A 3) 
if the damping factor h = crB2/pw, is small. It satisfies (A2) at z = 0 if 
pdkD = - (pg + JB)m2C. If the depth of liquid is h, the other boundary con- 
dition is that a$pn = 0 at  z = - h. Hence C = Dtanhkh and 

We shall take w as real, k and m as complex, and consider just the cases of deep 
and shallow liquid, for simplicity. 

Deep liquid. Here (A4) becomes 02k = -g'mz, if g' = g+ JBIp. Using (A3) 
we have rn FZ - i(w2/g')  (1 - iih), and it follows that, in a wavelength 2ng' ld  in 
the n direction, the wave amplitude falls in the ratio enh. With the value h = 0.09 
cited in $5, this ratio is 0,756 and damping is seen to be significant but not 
disastrous. 

pw2k = - (pg + JB) m2 tanh kh. (A 4) 

Shallow liquid. Here (A 4) becomes w2 z - hg'm2( 1 - $k2h2) and 

m z {iw/(g'h)*} (1 + k2h2/6). 

Note that a second term in the tanh expansion must be retained to reveal 
damping. From (A3) we have k2h2 E hw2( 1 - ih)/g', so that 

m z {iw/(g'h)*} (1 - ihk2h2/6). 

This confirms that hk2h2 or uB2k2h2/pw is the criterion for small damping. In 
a wavelength Zn(g'h)*/o in the n direction, the wave amplitude falls in the ratio 
enAkah2l3, which equals 0.986 for the values cited in $5. Damping is seen to be 
much weaker in shallow liquid. 
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